
UE4反射

UObjectBase UObjectBaseUtility UObject UField

UEnum

UStruct
UClass

UFunction

FObjectInitializer Get方法
FUObjectThreadContext::Get()
返回当前线程的一个单例实例。 TopInitializerChecked函数 TopInitializer函数

FUObjectThreadContext

Get方法

TArray<FObjectInitializer*> InitializerStack;
当前线程使用的FObjectInitializer的堆栈

FRestoreClassInfo

记住类的信息，以便在调用后可以恢复它

UClass（还没写完）

ClassContructor变量

类构造器。

ClassDefaultObject变量
类默认对象。

TMap<FName, UFunction*> FuncMap

存储了类函数的映射。

FGCReferenceTokenStream ReferenceTokenStream
在AssembleReferenceTokenStream()函数中完成。

FObjectInitializer

NewObject<>函数 StaticConstructObject_Internal方法 StaticAllocateObject方法 AllocateUObject方法

MyClass.generated.h

PRAGMA_DISABLE_DEPRECATION_WARNINGS

按照平台不同进行不同的被弃用警告 的声明。

暂时不知道干什么，也找不到定义在哪里的两个宏。
#define CppLearning_Source_CppLearning_Private_MyClass_h_15_SPARSE_DATA
#define CppLearning_Source_CppLearning_Private_MyClass_h_15_INCLASS_NO_PURE_DECLS

#define CppLearning_Source_CppLearning_Private_MyClass_h_15_RPC_WRAPPERS
这两个宏声明了供蓝图调用的函数。此时还是空宏，读者可在左侧的MyClass.generated.h（添加函数版）中看到它的作用。
#define CppLearning_Source_CppLearning_Private_MyClass_h_15_RPC_WRAPPERS_NO_PURE_DECL

#define CppLearning_Source_CppLearning_Private_MyClass_h_15_INCLASS \

static void StaticRegisterNativesUMyClass();

DECLARE_CLASS

参数：(UMyClass, UObject, COMPILED_IN_FLAGS(0), CASTCLASS_None, TEXT("/Script/CppLearning"), NO_API)

声明类的时候要做的一些重复性的工作。重载new和=操作符，将传入的Class和基类Class用typedef重命名为ThisClass和Super。

还声明了一些StaticGet方法，比如StaticClass获得类，还有获得Package和Flag的。

StaticClassCastFlags方法

重载new操作符 调用StaticAllocateObject方法来创建新的对象

StaticPackage方法

调用了gen.cpp中声明的StaticClass方法

DECLARE_SERIALIZER(UMyClass)

重载了<<操作符，传入的是序列化相关的内容。

#define CppLearning_Source_CppLearning_Private_MyClass_h_15_STANDARD_CONSTRUCTORS（旧）【或】
#define CppLearning_Source_CppLearning_Private_MyClass_h_15_ENHANCED_CONSTRUCTORS
声明一系列构造函数，与一个包装好的构造器。

NO_API UMyClass(const FObjectInitializer& ObjectInitializer);

标准的构造函数

DEFINE_DEFAULT_OBJECT_INITIALIZER_CONSTRUCTOR_CALL(UMyClass)

将上面的标准构造函数套了个壳，以便UClass保存其构造函数的指针，用于反射。

DECLARE_VTABLE_PTR_HELPER_CTOR(NO_API, UMyClass); \
DEFINE_VTABLE_PTR_HELPER_CTOR_CALLER(UMyClass); \
引擎内部热重载相关，建议不要去深究。

NO_API UMyClass(UMyClass&&); \
NO_API UMyClass(const UMyClass&); \
禁用掉了原生C++提供的移动与复制构造函数

#define CppLearning_Source_CppLearning_Private_MyClass_h_15_PRIVATE_PROPERTY_OFFSET
类的私有属性的偏移。类首先需要有私有成员变量，这个宏才不会是空宏。
类的成员在内存中的地址与类的入口地址是有一点距离的，这个宏就是为了指出这个偏移量而存在的。
#define CppLearning_Source_CppLearning_Private_MyClass_h_12_PROLOG

不清楚作用，也找不到定义。

#define CppLearning_Source_CppLearning_Private_MyClass_h_15_GENERATED_BODY \ 【或】

#define CppLearning_Source_CppLearning_Private_MyClass_h_15_GENERATED_BODY_LEGACY（历史遗留版）

CppLearning_Source_CppLearning_Private_MyClass_h_15_INCLASS_NO_PURE_DECLS

CppLearning_Source_CppLearning_Private_MyClass_h_15_RPC_WRAPPERS_NO_PURE_DECLS （新）【或】

CppLearning_Source_CppLearning_Private_MyClass_h_15_RPC_WRAPPERS（旧）

CppLearning_Source_CppLearning_Private_MyClass_h_15_SPARSE_DATA

CppLearning_Source_CppLearning_Private_MyClass_h_15_PRIVATE_PROPERTY_OFFSET

CppLearning_Source_CppLearning_Private_MyClass_h_15_ENHANCED_CONSTRUCTORS（新的加强版） 【或】
CppLearning_Source_CppLearning_Private_MyClass_h_15_STANDARD_CONSTRUCTORS（历史遗留的标准版）

CURRENT_FILE_ID

注明了调用GENERATED_BODY的代码所处的文件的位置

MyClass.gen.cpp

void EmptyLinkFunctionForGeneratedCodeMyClass() {}

项目名_API UClass* Z_Construct_UClass_UMyClass_NoRegister();
构造UMyClass对应的UClass对象，但是没有后续的注册过程

COREUOBJECT_API UClass* Z_Construct_UClass_UObject();

引用CoreUObject里的函数，主要是为了得到UObject对应的UClass

OuterClass = UObject::StaticClass();

调用UObject的StaticClass获取其静态对象。

UObjectForceRegistration(OuterClass);

强制对其进行注册。

项目名_API UClass* Z_Construct_UClass_UMyClass();

构造UMyClass对应的UClass对象，并进行注册。

调用
UE4CodeGen_Private::ConstructUClass
来构造并注册UClass对象，确保UObject本身的UClass已经注册生成

ConstructUProperties（下面UStruct的构造中也有这个函数。）
内部转发给ConstructFProperties，源码原理比较简单。
一个400行的switch-case语句来判断属性的类型，然后根据
类型不同调用不同的属性构造函数（比如FFieldPathProperty
，FTextProperty之类的）。
ReadMore变量针对的是容器类型，如果有进一步构造子属性的需求的话，会将ReadMore的值设定的更大
（比如Set的ReadMore被设置为1）在switch语句结束后，函数的最后部分用循环将更多的需求递归构造完。
NewProp->ArrayDim = PropBase->ArrayDim;//设定属性维度，单属性为1，int32 prop[10]这种的为10

CreateLinkAndAddChildFunctionsToMap函数
用一个for循环将传入的函数数组遍历

使用Functions->CreateFuncPtr()创建出UFunction对象。
并将对象串成链表。

调用AddFunctionToFunctionMap函数

UClass里保存有一个FuncMap，存储了函数对象(UFunction)与函数名字的映射。

AddFunctionToFuntionMap函数直接用朴实无华的FuncMap.Add进行添加。

UPackage* Z_Construct_UPackage__Script_CppLearning();

构造 项目 本身的UPackage对象

void UMyClass::StaticRegisterNativesUMyClass()

静态注册函数，然而其暂时为空。在类中加入函数之后会被UHT实现。

struct Z_Construct_UClass_UMyClass_Statics

static UObject* (* const DependentSingletons[])();

静态函数指针数组，这里面要保存该UClass所依赖的对象的构造函数。

static const UE4CodeGen_Private::FClassParams ClassParams;
FClassParams是一个保存了该UClass类下许多必要信息的结构。

static const FCppClassTypeInfoStatic StaticCppClassTypeInfo;
用来标志，该UClass类是否为抽象类的。

const FCppClassTypeInfoStatic Z_Construct_UClass_UMyClass_Statics::StaticCppClassTypeInfo = {
 TCppClassTypeTraits<UMyClass>::IsAbstract,

};

对标志该UClass类是否为抽象类的变量初始化

const UE4CodeGen_Private::FClassParams Z_Construct_UClass_UMyClass_Statics::ClassParams = {
 //在这个结构中要填入属性数组，依赖对象函数组，类的未注册函数，类中函数的数量，属性(Properties)的数量，被实现了的接口的数量，EClassFlags等
 //因为有好多行，建议感兴趣的自己去看generated.cpp中这块的代码，看的时候对照FClassParams结构的定义即可知道每个参数是干啥用的。

IMPLEMENT_CLASS(UMyClass, 879100156) #define IMPLEMENT_CLASS(TClass, TClassCrc)

UClass* TClass::GetPrivateStaticClass(GetPrivateStaticClass方法 GetPrivateStaticClassBody方法

FindObject<UClass> StaticFindObject
从内存中寻找是否已经存在了一个待生成的对象

GUObjectAllocator . AllocateUObject方法 利用FMemory::Malloc分配一块内存

然后使用 ::new(UMyClass)来生成一个对象。此时会将套了壳的构造函数指针传入以供初始化，也就是说UClass保存了一个构造自身函数的指针。
::new是最外层命名空间的new运算符
这里是placement new的语法，将对象生成在了AllocateUObject分配的内存上。

InitializePrivateStaticClass函数

调用InSuperClassFn()，设定该类的SuperStruct（即Super::StaticClass()。）
换句话说就是声明该类的基类是啥。

InWithinClassFn()（即WithinClass::StaticClass()）设定该类的Outer类类型

调用UObjectBase::Register()
将自己添加到FPendingRegistrantInfo的映射中。

将自己添加到FPendingRegistrant的链表中。

RegisterNativeFunc() （以下两行解释来自大钊）
就是上文的StaticRegisterNativesUMyClass，在此刻调用，用来像UClass里添加Native函数。
Native函数指的是在C++有函数体实现的函数，而蓝图中的函数和BlueprintImplementableEvent的函数就不是Native函数。

实质上调用的是UMyClass::StaticRegisterNativesUMyClass()

static const FNameNativePtrPair Funcs[] = {
//exec开头的都是在.generated.h里定义的蓝图用的，暂时不管它，理解为可以调用就行了。
 { "AddHP", &UMyClass::execAddHP },
 { "CallableFunc", &UMyClass::execCallableFunc },
 { "NativeFunc", &UMyClass::execNativeFunc },
}
这里声明了一个函数数组，把该类的Native函数都装进去。

FNativeFunctionRegistrar::RegisterFunctions(Class, Funcs, ARRAY_COUNT(Funcs)) 用一个for循环，将Native函数的数据添加进去。
Class->AddNativeFunction

定义在Class.h
struct FNativeFunctionLookup{
 FName Name;
 FNativeFuncPtr Pointer；
}这个便是UClass中存储Native函数的数据结构。

定义在Class.h
TArray<FNativeFunctionLookup> NativeFunctionLookupTable;
这个便是存储Native函数信息的数组。
“这里不用TMap而用TArray是因为一般来说我们在一个类里写的函数数量并不会太多，
对于元素比较少的情况下，TArray的线性查找也很快，而且还省内存。”——大钊

new(NativeFunctionLookupTable) FNativeFunctionLookup(InFName,InPointer);
同样用了placement new的语法，新建一个存储Native函数信息的结构并将其保存到数组中，一气呵成。

static TClassCompiledInDefer<TClass> AutoInitialize##TClass(TEXT(#TClass), sizeof(TClass), TClassCrc); \
注意这个“static”，这就意味着它会发生在引擎的主循环之前。

在构造函数中调用UClassCompiledInDefer函数。

GetDeferredClassRegistration().Add(ClassInfo)
将该UClass类的FFieldCompiledInInfo信息存储到一个TArray单例中，在引擎CoreUObject模块加载的时候会使用上。

TMap<FName, FFieldCompiledInInfo*>& DeferMap =GetDeferRegisterClassMap();
这个映射看起来和上面的TArray单例大同小异，实际上它只在HotReaload热重载时才用上，因此我们不关心。

定义Register函数 return TClass::StaticClass();

static FCompiledInDefer Z_CompiledInDefer_UClass_UMyClass

(Z_Construct_UClass_UMyClass, &UMyClass::StaticClass, TEXT("/Script/CppLearning"), TEXT("UMyClass"), false, nullptr, nullptr, nullptr);

延迟注册，注入信息，在启动的时候调用。由于这是static变量，它的初始化在main函数之前。

延迟注册是为了避免在引擎启动时注册过多东西，使得迟迟才能进入main函数，用户观感就是进程卡死。因此要延迟到main函数中，用多线程等技术注册。

GetConvertedDynamicPackageNameToTypeName().Add
将其添加到待注册的列表中。

UObjectCompiledInDefer函数

MyEnum.generated.h

#define FOREACH_ENUM_EMYENUM(op)

定义了一个遍历枚举的宏，只是为了方便使用(by大钊)

#define CURRENT_FILE_ID

template<> CPPLEARNING_API UEnum* StaticEnum<EMyEnum>

MyEnum.gen.cpp

项目名_API UEnum* Z_Construct_UEnum_CppLearning_EMyEnum();

static const UE4CodeGen_Private::FEnumeratorParam Enumerators[] = {

{ "EMyEnum::MY_Dance", (int64)EMyEnum::MY_Dance },

{ "EMyEnum::MY_Rain", (int64)EMyEnum::MY_Rain },

{ "EMyEnum::MY_Song", (int64)EMyEnum::MY_Song },

}; 将我们在枚举类型中定义的几个枚举，写入一个名为FEnumeratorParam（枚举对）的结构中，过会儿用来注册。

static const UE4CodeGen_Private::FEnumParams EnumParams
类似于UClass，这也是一个保存了UEnum中种种必要信息的结构。
包括Enum本身的名字，展示给编辑器的名字的函数，里面有哪些枚举对，Flag等等。

UE4CodeGen_Private::ConstructUEnum

同样地，类似于UClass上面，这里也是用它来构造并注册UEnum。

UEnum* NewEnum = new (EC_InternalUseOnlyConstructor, Outer, UTF8_TO_TCHAR(Params.NameUTF8), Params.ObjectFlags) UEnum(FObjectInitializer());

直接创建该Enum对象。源码里用了重载new的方式，注意不是placement new。这个new的方式定义在DECLARE_CLASS宏中。是调用了StaticAllocateObject来分配内存。

TArray<TPair<FName, int64>> EnumNames;
声明了一个枚举对，用for循环来将传入的Params中的枚举对填入。
然后再通过调用NewEnum的SetEnum来存入枚举数组。

调用NewEnum->SetEnumDisplayNameFn

将Params中的DispalyNameFunc，名字展示函数作为参数传入。

UPackage* Z_Construct_UPackage__Script_CppLearning();

生成项目其本身对应的包，和UClass前面类似。

static UEnum* EMyEnum_StaticEnum()方法

一个返回该UEnum类型的函数。会在延迟注册时被调用。 GetStaticEnum函数

template<> CPPLEARNING_API UEnum* StaticEnum<EMyEnum>(){
 return EMyEnum_StaticEnum();
}

static FCompiledInDeferEnum Z_CompiledInDeferEnum_UEnum_EMyEnum
(EMyEnum_StaticEnum, TEXT("/Script/CppLearning"), TEXT("EMyEnum"), false, nullptr, nullptr);
延迟注册。

MyStruct.generated.h

template<> CPPLEARNING_API UScriptStruct* StaticStruct<struct FMyStruct>();

#define CURRENT_FILE_ID

MyStruct.gen.cpp

UPackage* Z_Construct_UPackage__Script_CppLearning();

生成项目对应的包，不再赘述。

项目名_API UScriptStruct* Z_Construct_UScriptStruct_FMyStruct();

class UScriptStruct* FMyStruct::StaticStruct()
静态获取UScriptStruct的方法。 用GetStaticStruct方法获取结构的单例

template<> CPPLEARNING_API UScriptStruct* StaticStruct<FMyStruct>(){
 return FMyStruct::StaticStruct();
}对前面.h文件中的方法的实现

static FCompiledInDeferStruct Z_CompiledInDeferStruct_UScriptStruct_FMyStruct
(FMyStruct::StaticStruct, TEXT("/Script/CppLearning"), TEXT("MyStruct"), false, nullptr, nullptr);
延迟注册

static struct FScriptStruct_CppLearning_StaticRegisterNativesFMyStruct
声明了一个静态结构，里面只有一个构造函数——利用了静态函数的特性，在main函数之前进行初始化。
因此程序一启动就会调用UScriptStruct::DeferCppStructOps向程序注册该结构的CPP信息（大小，内存对齐等）

调用UScriptStruct::DeferCppStructOps函数

主要用来 动态获取结构体的构造和析构函数。用于在程序中使用。

TMap<FName,UScriptStruct::ICppStructOps*>& DeferredStructOps = GetDeferredCppStructOps();
用于保存虚方法以泛型和动态单例方式构造、析构等本机结构，以避免与静态构造函数顺序有关的问题

DeferredStructOps.Add(Target,InCppStructOps)

在这个结构名和对象的Map映射里登记“Struct相应的C++操作类”

在PrepareCppStructOps函数中被调用。这个函数的注释是：

“查找CppStructOps，如果我们没有它，并设置属性大小”

而PrepareCppStructOps函数又会在Struct的默认构造函数

UScriptStruct::UScriptStruct中被调用。

CppStructOps = GetDeferredCppStructOps().FindRef(GetFName());
这个GetFName获得的自然是UScriptStruct的名字了。
接下来会根据CppStructOps的各种字段（比如有没有序列化器之类的）
来设置StructFlags的值。
同时也会调用FMemory相关的一些函数，和自己的Constructor和Destruct函数，对
自身的属性尺寸进行一些设置。说实话，这一部分内容，即使去看它们的实现，笔者依然不太清楚。

UScriptStruct* Z_Construct_UScriptStruct_FMyStruct()函数

构造关联的UScriptStruct 调用UE4CodeGen_Private::ConstructUScriptStruct()函数

ConstructUProperties
内部转发给ConstructFProperties，源码原理比较简单。
一个400行的switch-case语句来判断属性的类型，然后根据
类型不同调用不同的属性构造函数（比如FFieldPathProperty
，FTextProperty之类的）。
ReadMore变量针对的是容器类型，如果有进一步构造属性的需求的话，会将ReadMore的值设定的更大
（比如Set的ReadMore被设置为1）在switch语句结束后，函数的最后部分用循环将更多的需求递归构造完。

struct Z_Construct_UScriptStruct_FMyStruct_Statics{

} 存储了该UStruct的信息的一个静态的结构变量。

static void* NewStructOps();

模板来管理动态访问c++结构体的构造和销毁（注释翻译）

static const UE4CodeGen_Private::FFloatPropertyParams NewProp_Score;
我定义的float Score;在后文会对其初始化。

static const UE4CodeGen_Private::FUnsizedIntPropertyParams NewProp_SSSS;
我定义的 int SSSS;在后文会对其初始化。

static const UE4CodeGen_Private::FPropertyParamsBase* const PropPointers[];
在后文会对其初始化，使用的是初始化了的SSSS和Score对其初始化。

static const UE4CodeGen_Private::FStructParams ReturnStructParams;
用于构造与注册的参数结构。

static const UE4CodeGen_Private::FFloatPropertyParams NewProp_Score = { UE4CodeGen_Private::EPropertyClass::Float, "Score", RF_Public|RF_Transient|RF_MarkAsNative, 0x0010000000000004, 1, nullptr, STRUCT_OFFSET(FMyStruct, Score),
METADATA_PARAMS(NewProp_Score_MetaData, ARRAY_COUNT(NewProp_Score_MetaData)) };
这就是Score的属性信息。其它的成员变量也是类似，不再赘述。

MyClass.generated.h（声明了函数的版本）

建议先把右边的MyClass,MyEnum,MyStruct看完后再看这部分

#define CppLearning_Source_CppLearning_Private_MyClass_h_15_RPC_WRAPPERS_NO_PURE_DECLS \
virtual void NativeFunc_Implementation(); \
\
DECLARE_FUNCTION(execNativeFunc); \
DECLARE_FUNCTION(execCallableFunc)
前面提到的RPC_WRAPPERS宏，此时发挥作用了。将这些供蓝图调用的函数的信息保存下来。

MyClass.gen.cpp(声明函数版)

DEFINE_FUNCTION(UMyClass::execNativeFunc)
{
 P_FINISH;
 P_NATIVE_BEGIN;
 P_THIS->NativeFunc_Implementation();
 P_NATIVE_END;

}
另外还有execCallbleFunc，这里针对的是蓝图可能没实现的函数。(也就是Native函数)
（ImplementableFunc因为必然有蓝图实现，所以不需要。）
因此在这里需要为蓝图调用的版本声明一份函数体。
专门生成exec前缀是为了供蓝图虚拟机（VM）调用。

void UMyClass::StaticRegisterNativesUMyClass()
原本是没有实现的，现在我们得知它要负责函数注册的工作。
在这里只注册了execCallableFunc和execNativeFunc

调用FNativeFunctionRegistrar::RegisterFunctions对函数进行注册
Class->AddNativeFunction(UTF8_TO_TCHAR(InArray->NameUTF8), InArray->Pointer);
注册函数指针和名字的映射。把相应的Class内定义的函数添加到UClass内部的函数表里去。
那个函数表是NativeFunctionLookupTable，定义在Class.h，感兴趣的读者可以自行翻阅。

void UMyClass::ImplementableFunc()

{

 ProcessEvent(FindFunctionChecked(NAME_UMyClass_ImplementableFunc),NULL);

}

另外还有NativeFunc，这里针对的是要求有C++实现，但是可能没有实现的函数(也就是非Native函数)。（CallableFunc是一定实现了的，否则编译都无法通过。）

因此需要在这里提供一份默认实现。

这也就是UHT帮我们生成的函数体。当我们在C++里调用ImplementableFunc的时候，其实会触发一次函数查找，如果在蓝图中有定义该名字的函数，则会得到调用。（by大钊）

struct Z_Construct_UFunction_UMyClass_CallableFunc_Statics

{

 static const UE4CodeGen_Private::FFunctionParams FuncParams;

}声明一个静态的结构，存放对应函数的信息。类型为FFuntionParams。

const UE4CodeGen_Private::FFunctionParams Z_Construct_UFunction_UMyClass_CallableFunc_Statics::FuncParams =
{ (UObject*(*)())Z_Construct_UClass_UMyClass, nullptr, "CallableFunc", nullptr, nullptr, 0, nullptr, 0, ………………省略};
对其初始化，将该函数的必要信息填入。

UFunction* Z_Construct_UFunction_UMyClass_CallableFunc()

构造函数的UFunction*对象 UE4CodeGen_Private::ConstructUFunction

const FClassFunctionLinkInfo Z_Construct_UClass_UMyClass_Statics::FuncInfo[] = {

 { &Z_Construct_UFunction_UMyClass_CallableFunc, "CallableFunc" }, // 3778107657

 { &Z_Construct_UFunction_UMyClass_ImplementableFunc, "ImplementableFunc" }, // 165807643

 { &Z_Construct_UFunction_UMyClass_NativeFunc, "NativeFunc" }, // 1037346021

}

现在ClassParams也要存储函数的信息了，因此增加了一个FuncInfo字段。

类似地，要存储属性信息，也会增加一个PropPointers字段。

ClassParams
不再赘述。

UClass* Z_Construct_UClass_UMyClass();
不再赘述。

UE4CodeGen_Private::ConstructUClass

来构造并注册UClass对象。请与ConstructUFunction区别。

FEnumeratorParam
枚举项

const FMetaDataPairParam* MetaDataArray;
int32 NumMetaData;

FEnumParams const FEnumeratorParam* EnumeratorParams; //枚举项数组 const FMetaDataPairParam* MetaDataArray;

int32 NumMetaData;

FMetaDataPairParam

元数据对

FPropertyParamsBase

FPropertyParamsBaseWithOffset

FGenericPropertyParams
通用的属性参数

FObjectPropertyParams

对象引用类型属性参数

FDelegatePropertyParams

委托类型的属性参数

FMulticastDelegatePropertyParams

多播委托类型的属性参数

FEnumPropertyParams

枚举类型属性参数

被打上UPROPERTY宏的变量，根据其类型的不同，来使用不同的属性参数。

比如float类型，使用的就是FFloatPropertyParams类型。

在UStruct的gen.cpp文件中，会生成其结构中的各个成员的信息——FXXXPropertyParams。

然后收集一个个属性的信息整合成数组，合并到结构参数(FStructParams)里去，最后传给ConstructUScriptStruct来构造。

FClassFunctionLinkInfo

类里的函数链接信息，一个函数名字对应一个UFunction对象

FCppClassTypeInfoStatic

类在Cpp里的类型信息，用一个结构是为了将来也许还会添加别的字段

FFunctionParams
函数参数

写文章的思路

类型系统代码的生成

从GENERATED_BODY()宏出发

大致地讲讲generated.h和gen.cpp，给那一堆宏划分出区块，各自的作用。
讲的时候注重共性与个性的区分。比如多个构造函数就是每个都有的。
此外，像FObjectInitializer这些与主题关系不是很紧密的，可以作为题外话来讲。

在一个个空文件的基础上加上函数和变量。开始讲解UE4Codegen_Private。
然后说明对于函数和变量的信息是用哪些代码来生成的。同时讲解MetaData元数据。

生成的信息的收集
将前面生成的信息进行收集。讲解FCompiledInDefer类是如何把所有的UClass类中的信息都收集到一个全局变量里的。
讲的时候要注意其和Z_Construct_XXX的关系——这个构造函数是被收集到那个全局变量里，在注册时才被调用的。
也记得要讲如何运用static的特性来保证在引擎循环开始之前，将信息都收集好。

信息的消费 从引擎的注册流程讲起，在哪里会用到哪些信息。讲的时候既要按照流程来，也要从数据的角度来讲。
最后等引擎自己消费讲完后，可以讲讲我们用户如何进行消费（这个我还需要写点代码实验一下）

信息的收集 UClass
static FCompiledInDefer Z_CompiledInDefer_UClass_UMyClass
(Z_Construct_UClass_UMyClass, &UMyClass::StaticClass, TEXT("/Script/CppLearning"), TEXT("UMyClass"), false, nullptr, nullptr, nullptr);
FCompiledInDefer是一个静态结构。static的特性决定了它在引擎的主循环开始之前就会被初始化——也就是说调用它的构造函数。
传入的参数有，类型的构造函数，获取函数，包的路径，类的名字等。

构造函数调用了UObjectCompiledInDefer函数。

如果不是动态类

TArray<UClass *(*)()>& DeferredCompiledInRegistration = GetDeferredCompiledInRegistration();
GetDeferredCompiledInRegistration函数会返回一个待注册的函数列表——也是静态的。惰性初始化且单例。

DeferredCompiledInRegistration.Add(InRegister)
将Z_Construct_UClass_UMyClass函数传入。

如果是动态类

FDynamicClassStaticData ClassFunctions;
ClassFunctions.ZConstructFn = InRegister;
ClassFunctions.StaticClassFn = InStaticClass
声明了一个装有动态类的信息的变量。也就是保存了构造函数和静态获取类的函数。

GetDynamicClassMap().Add(FName(DynamicPathName), ClassFunctions);
将信息装到一个装有所有的动态/本地化类的映射中。

将类名从路径名中删去

FPendingRegistrantInfo

const TCHAR*	Name;
const TCHAR*	PackageName
记录了待注册类的名字和所在的包名。

保存了一个映射。可以通过UObjectBase指针来找到注册信息(上面说的类名和包名。)
static TMap<UObjectBase*, FPendingRegistrantInfo> PendingRegistrantInfo;

FPendingRegistrant
保存了一个链表，单纯地用于指出注册的顺序。
UObjectBase*	Object;
FPendingRegistrant*	NextAutoRegister

引擎启动时的注册流程
 （信息的消费）

WinMain GuardedMain EnginePreInit GEngineLoop.PreInit

LoadCoreModules StartupModule

UClassRegisterAllCompiledInClasses
这一步骤的目的主要是为了把CoreUObject里面定义的类的UClass都给先构建出来。
注册并未完成，因为只是刚刚构建，有了对象，还得将它注册。
构建用的是StaticClass方法，在关联线中有写。

空

UClassRegisterAllCompiledInClasses

UObjectProcessRegistrants();

TArray<FPendingEnumRegistrant> PendingEnumRegistrants = MoveTemp(GetDeferredCompiledInEnumRegistration());
MoveTemp会触发TArray的右移引用赋值，也就是C++11的移动语义，会移交指针权限给PendingEnumRegistrants。
也就导致了原本GetDeferredCompiledInEnumRegistration()函数中的静态数组被清空。
这也是为什么前面的while循环体中没有对TArray进行remove操作，但是数组却会变空，触发while判断条件的原因。

static FName LongEnginePackageName(TEXT("/Script/Engine")); //引擎包的名字

TArray<UClass* (*)()> PendingRegistrants = MoveTemp(GetDeferredCompiledInRegistration());
也是用MoveTemp。这和在对UEnum和UStruct里做的事类似，此处不再赘述。

用一个For循环遍历它

UClass* Class = Registrant();//调用生成代码里的Z_Construct_UClass_UMyClass创建UClass

用if else判断Class->GetOutermost()->GetFName()
判断Class所属的包是什么。
//按照所属于的Package分到3个数组里

TArray<UClass*> NewClassesInCoreUObject;
装属于CoreUObject包的对象。
TArray<UClass*> NewClassesInEngine;
装属于Engine包的对象。
TArray<UClass*> NewClasses;
属于其它包的。

分别用for循环遍历这三个数组，对其中的每一个元素调用
Class->GetDefaultObject();
创建出CDO。循环的顺序是先CoreUObject，再Engine,最后其它。以下复制粘贴自大钊的解释：“
这三个数组的顺序是：CoreUObject、Engine和其他。按照此顺序构造的原因是根据依赖关系。
构造CDO的过程，有可能触发uassset的加载和UObject构造函数的调用，所以就可能在内部触发其他Package里对象的加载构造。
CoreUObject最底层（它不会引用其他的Package里的对象）、Engine次之（它有可能引用底层的对象）、其他（就不确定会引用啥了）。
所以依照此顺序能避免依赖倒置，从而减少重复调用查找。”

空

AppInit
FCoreDelegates::OnInit.Broadcast();

在前文注册的委托，在CoreUOject模块加载的时候指向了InitUObject InitUObject

FCoreDelegates::OnExit.AddStatic(StaticExit);
注册退出事件

FModuleManager::Get().OnProcessLoadedObjectsCallback().AddStatic(ProcessNewlyLoadedUObjects);

注册ProcessNewlyLoadedUObjects函数。后面会多次调用它。

StaticUObjectInit()

UObjectBaseInit();

UObjectProcessRegistrants();

处理注册项，为其创建名字，所属的Package，设定

它的类型等。并将待注册的对象添加到全局的列表中。
然而它的CDO对象依然尚未被创建。拥有名字，只是

代表它可以被查找到。CDO对象的创建，在

ProcessNewlyLoadedUObjects函数的

UObjectLoadAllCompiledInDefaultProperties函数中。

TArray<FPendingRegistrant> PendingRegistrants;//声明一个暂存要被注册的UObject指针的列表。
DequeuePendingAutoRegistrants(PendingRegistrants); //从链表中提取注册项们到上面的暂存列表中。

通过for循环遍历暂时列表。

UObjectForceRegistration(PendingRegistrant.Object); //真正的注册

TMap<UObjectBase*, FPendingRegistrantInfo>& PendingRegistrants = FPendingRegistrantInfo::GetMap();

FPendingRegistrantInfo* Info = PendingRegistrants.Find(Object);

用UObjectBase指针，来查找一下这个映射中是否保存着它的注册信息。

If(Info)
因为之前可能已经注册过了，注册过的对象会被从Map中移除
所以可能是找不到的。如果没找到就无事发生。

const TCHAR* PackageName = Info->PackageName;//对象所在的Package
const TCHAR* Name = Info->Name; //对象名

PendingRegistrants.Remove(Object);
将它从映射中删除（因为我们现在已经将它注册过了）

Object->DeferredRegister(UClass::StaticClass(),PackageName,Name);//延迟注册

UPackage* Package = CreatePackage(nullptr, PackageName); //创建对象属于的Package
Register的时候还不能正常NewObject和加载Package，而初始化之后这个阶段就可以开始
正常的使用UObject系统的功能了。所以这里面才可以开始CreatePackage。

OuterPrivate = Package; //设定Outer到该Package

ClassPrivate = UClassStaticClass; //设定该对象属于的UClass*类型

AddObject(FName(InName), EInternalObjectFlags::None);

//注册该对象的名字，将该对象添加到全局的对象列表中。这个“添加”其实就是注册的真正动作。

NamePrivate = InName; //设定对象的名字
这步之后这些一个个UClass*对象才有名字

DequeuePendingAutoRegistrants(PendingRegistrants); //继续尝试提取

在每一项注册之后，都要重复调用DequeuePendingAutoRegistrants一下来继续提取，

这么做是因为在真正注册一个UObject的时候，里面有可能触发另一个Module的加载，从而导致有新的注册项进来。

所以就需要不断的提取注册直到把所有处理完

GUObjectAllocator.AllocatePermanentObjectPool(SizeOfPermanentObjectPool);
初始化对象分配器

GUObjectArray.AllocateObjectPool(MaxUObjects, MaxObjectsNotConsideredByGC, bPreAllocateUObjectArray);
初始化对象管理数组

void InitAsyncThread();
InitAsyncThread(); //初始化Package(uasset)的异步加载线
用来后续Package(uasset)的加载

Internal::GObjInitialized = true; //指定UObject系统初始化完毕
这样在后续就可以用bool UObjectInitialized()来判断对象系统是否可用。

GObjTransientPkg = NewObject<UPackage>(nullptr, TEXT("/Engine/Transient"), RF_Transient);

GObjTransientPkg->AddToRoot(); //这个临时包总不会释放

我们发现在UObjectBaseInit初始化结束后，就已经可以开始NewObject了，标志着整个UObject系统的成功创建

GObjTransientPkg是个全局变量，所有没有Outer的对象都会放在这个包里。

我们在NewObject的时候，如果不提供Outer，则会返回这个临时包，符合了UObject对象必须在UPackage里的一贯基本原则。

GetDeferredClassRegistration函数

在UObjectBase.cpp中有一个名为FPendingRegistrant的结构
这个结构本质是一个UObjectBase的链表，保存那些要被自动注册的对象指针。
这个链表指出了被注册对象的顺序。顺着关联线可以看到它被写入信息的位置。
同时，在文件中还将这个链表的头尾指针声明为了全局的。
在DequeuePendingAutoRegistrants函数中，就可以直接通过全局的链表头指针，
来对链表进行读和删除操作。

NamePrivate：定义了对象的名字

OuterPrivate：定义了对象的从属关系，这个对象属于哪个包(UPackage)

ClassPrivate：定义了对象的类型关系，这个对象的类型(UClass)是什么

SuperStruct：定义了类型的继承关系，这个对象的基类是什么

TArray<UClass *(*)()>

GetDeferredCompiledInRegistration();

存储Class的Z_Construct_UClass_UMyClass函数。
（Enum则是存储EMyEnum_StaticEnum函数，Struct

则是StaticStruct()，但它们最后也都是转发给Z_Construct_xxx）

TArray<FFieldCompiledInInfo*>
GetDeferredClassRegistration()
模块加载的类，延迟到我们一次性注册它们
内含有Register()函数(转发给StaticClass方法)
ClassPackage()函数
Class的大小：Size。 等。

IMPLEMENT_CLASS

TClassCompiledInDefer<TClass>
TClassCompiledInDefer其实是

FFieldCompiledInInInfo的子类。

也就是说它也保存着类的

Register,ClassPackage，size等。

static FCompiledInDefer Z_CompiledInDefer_UClass_UMyClass

GetPrivateStaticClassBody UObjectBase::Register()

FPendingRegistrantInfo{

 const TCHAR* Name;

 const TCHAR* PackageName

}

记录了待注册类的名字和所在的包名。

static TMap<UObjectBase*, FPendingRegistrantInfo> PendingRegistrantInfo;
保存了一个映射。可以通过UObjectBase指针来找到上面说的类名和包名。

FPendingRegistrant

一个单纯地记录了注册顺序的链表

CoreUObject模块加载时

UClassRegisterAllCompiledInClasses

【消费】：消费类的UClass的StaticClass函数。

【任务】：把CoreUObject里面定义的类的UClass都给先构建出来。

注册并未完成，因为只是刚刚构建，有了对象，还得将它注册。

AppInitInitUObject

UObjectProcessRegistrants
【消费】：获取待注册项的列表，得知了注册的顺序
【任务】：遍历该列表，调用UObjectForceRegistration来干活

UObjectForceRegistration

【消费】：消费之前保存的类的名字和包的名字。

【任务】：处理注册项，为其创建名字，所属的Package(调用DeferredRegister，里面再

调用了CreatePackage)，设定它的类型等。并将待注册的对象添加到全局的列表中。

ProcessNewlyLoadedUObjects
一个独自完整的注册函数。

UObjectLoadAllCompiledInDefaultProperties

【消费】：UClass的Z_Construct_UClass_UMyClass函数。

【任务】：利用Z_Construct函数构建出（准确的说是获取之前构建好了的)Class对象后，

通过前面设置的Package来将其分类为CoreUObject包的，Engine包的，其它包的。

然后按照顺序为它们创建CDO。

而Z_Construct函数会调用UE4Codegen_Private::ConstructXXX来为

UClass设置函数，属性等，实现了的接口，配置文件名等最后的工作。

引擎启动时的注册流程

类型信息的代码生成 类型信息的收集、存储

类型信息的消费

本思维导图来源知乎，作者：DarkFlameMaster
https://www.zhihu.com/people/xian-sui-bian-qi-ge-ming-hao-liao/posts

反射实战

SetPropertyValue (A,Value)
*GetPropertyValuePtr(A) = Value;

用*解引用传回的A的地址，将A所在的地址的值设置为Value。
GetPropertyValuePtr

将属性值的地址转换为适当的类型

XXXProperty->ContainerPtrToValuePtr
传入一个UObject的地址，这个UObject便是“Container”。
返回值是ContainerPtr+Offset_Internal。
Offset_Internal指出了该Property在类中相对起始地址的偏移量。
类描述的是一系列对象的共同特征，也就是说类的实例也都是这样。
因此ContainerPtr+Offset_Internal=该Property类变量在内存中的地址。
例：
class A{
 X var;//声明一个X类的变量var
}
A *A1;
A *A2;//声明A的两个实例。
FProperty* property=A1->GetClass()->FindPropertyByName("SomeName");
X *result=property->ContainerPtrToValuePtr(A1);
那么result的值就是A1中的var的地址。

元数据

FField() GetMapForObject

Package ConstructXXX AddMetaData SetValue

FField FProperty

ProcessNewlyLoadedUObjects

const TArray<UClass* (*)()>& DeferredCompiledInRegistration = GetDeferredCompiledInRegistration();

const TArray<FPendingStructRegistrant>& DeferredCompiledInStructRegistration = GetDeferredCompiledInStructRegistration();

const TArray<FPendingEnumRegistrant>& DeferredCompiledInEnumRegistration = GetDeferredCompiledInEnumRegistration();

声明了三个数组。分别对应UObject，UStruct，UEnum。它们的结构都大同小异。

UObject保存的是Z_Construct_UClass_UMyClass函数。这个函数在转发给UE4CodeGen_Private::ConstructUClass时，传入的参数里

包含有获取 “所在包” 的函数（也就是Z_Construct_UPackage__Script_CppLearning）

而UStruct和UEnum，它们的列表中的元素是FPendingXXXRegistrant的结构，这个结构中包含了一个注册函数，和一个 “所在包”的变量。

While(上面的三个列表都还不为空，FPendingRegistrant的链表也不为空)

UObjectLoadAllCompiledInDefaultProperties();

继续注册UObject。

我们知道，代码里Class里可以包含结构和枚举。因此对Class的注册放在

Struct和Enum的后面，这也是UE的讲究。

UObjectLoadAllCompiledInStructs();

为代码里的枚举和结构构造类型对象

代码没什么好看的，用for循环遍历上面说的FPendingXXXRegistrant的列表

然后对每一个元素调用CreatePackage和RegisterFn。为它们创建包和调用注册函数。

注册函数就是gen.cpp中的Z_Construct_UEnum_项目名_EMyEnum，Struct也是同理。
另外，大钊特地提到了一点：“
顺序总是先enum再struct。其原因其实是因为更基础的类型总是先构造。

代码里enum不能嵌套struct，但struct里却可以包含enum。”

PreInitPreStartupScreen

在静态初始化的时候会调用它，然后再嵌套调用Z_Construct

传入后，被以Result = (*InRegister)();的形式调用。

关联

在循环结束后。

获取到之前收集的信息，现在要消费它们了！

传入参数

回顾前面的内容，我们知道StaticClass方法的真正实现是给GetPrivateClassBody方法。
在那里面，会分配内存，真正在内存中创建出对象。然后将其添加到映射中，等待注册。

调用Register方法，其实就是调用它的StaticClass方法。

调用GetDeferredClassRegistration，并遍历该数组。
调用该数组中每个元素的Register方法。

需要提前注意的是，不管是Native与否，函数后面都会生成一个UFunction对象，

只不过Native函数的UFunction在绑定的时候

会去它所属于的UClass里的NativeFunctionLookupTable通过函数名字查找真正的函数指针，

而非Native的UFunction会把函数指针指向UObject::ProcessInternal，用来处理蓝图虚拟机调用的情况。

(by大钊)

传进去

生成属性信息。

对其初始化

包含一个元数据数组

包含一个元数据数组

包含枚举项数组

将注册函数传递给它。在引擎进入main线程后开始注册。
FClassParams会把收集来的类的信息在注册时交给内存统一保存。

传入

传入

传入

h中使用DECLARE宏声明，cpp中使用DEFINE宏定义函数体。

调用宏

作为参数传入

作为参数传入,作用是指出该类所在的Package

作为参数传入

实现

转发给

作为参数传入

作为参数传入

传给ConstructUEnum函数

传给FEnumParams结构

调用它来实现

对它的实现

被作为初始化FClassParams结构类的CLassParams变量的参数之一

对其初始化。

传入ClassParams参数。

对其初始化

指针数组也存储了它

指针数组存储了它

调用UMyClass::StaticClass()来获得内存中静态的对象

转发给GetPrivateStaticClass方法

调用宏

调用宏

调用宏

分配内存

调用ClassConstructor，传入FObjectInitializer，创建对象在StaticAllocateObject方法分配的内存上。

TopInitializer函数返回线程的FObjectInitializer堆栈中的顶部的那个元素。
当前线程会保存一个FObjectInitiallizer的堆栈。

Get方法，返回单例实例。

