|
@@ -83,7 +83,9 @@ $$
|
|
|
|
|
|
|
|
$$
|
|
$$
|
|
|
\frac{1}{n} - 1 = \frac{(1-m)*Z_2}{m*Z_1}
|
|
\frac{1}{n} - 1 = \frac{(1-m)*Z_2}{m*Z_1}
|
|
|
-\\
|
|
|
|
|
|
|
+$$
|
|
|
|
|
+
|
|
|
|
|
+$$
|
|
|
n = \frac{m*Z_1}{(1-m)*Z_2 + m*Z_1}
|
|
n = \frac{m*Z_1}{(1-m)*Z_2 + m*Z_1}
|
|
|
$$
|
|
$$
|
|
|
|
|
|
|
@@ -95,9 +97,13 @@ P 的坐标可以通过 P = (1-n) * A + n * B 得到,进而得到 P 的坐标
|
|
|
|
|
|
|
|
$$
|
|
$$
|
|
|
Z_n = (1-n) * Z_1 + n * Z_2
|
|
Z_n = (1-n) * Z_1 + n * Z_2
|
|
|
-\\\\
|
|
|
|
|
|
|
+$$
|
|
|
|
|
+
|
|
|
|
|
+$$
|
|
|
Z_n = \frac{(1-m) * Z_2}{(1-m)*Z_2 + m*Z_1} * Z_1 + \frac{m*Z_1}{(1-m)*Z_2 + m*Z_1} * Z_2
|
|
Z_n = \frac{(1-m) * Z_2}{(1-m)*Z_2 + m*Z_1} * Z_1 + \frac{m*Z_1}{(1-m)*Z_2 + m*Z_1} * Z_2
|
|
|
-\\\\
|
|
|
|
|
|
|
+$$
|
|
|
|
|
+
|
|
|
|
|
+$$
|
|
|
Z_n = \frac{1}{\frac{1-m}{Z_1} + \frac{m}{Z_2}}
|
|
Z_n = \frac{1}{\frac{1-m}{Z_1} + \frac{m}{Z_2}}
|
|
|
$$
|
|
$$
|
|
|
|
|
|