|
|
@@ -268,7 +268,7 @@ $$
|
|
|
\end{bmatrix}
|
|
|
\begin{bmatrix}
|
|
|
x_b \\ y_b \\ z_b
|
|
|
-\end{bmatrix}= \left ( x_a*x_b + y_a*y_b + z_a*z_b \right )
|
|
|
+\end{bmatrix}= \left ( x_a * x_b + y_a * y_b + z_a * z_b \right )
|
|
|
$$
|
|
|
|
|
|
向量的叉乘转成矩阵运算
|
|
|
@@ -1713,19 +1713,19 @@ $$
|
|
|
接下来就是得到所有的时间t的点,得到的就是一个连续曲线
|
|
|
|
|
|
$$
|
|
|
-b_0^1(t) = (1-t)*b_0 + t*b_1
|
|
|
+b_0^1(t) = (1-t) * b_0 + t * b_1
|
|
|
$$
|
|
|
|
|
|
$$
|
|
|
-b_1^1(t) = (1-t)*b_1 + t*b_2
|
|
|
+b_1^1(t) = (1-t) * b_1 + t * b_2
|
|
|
$$
|
|
|
|
|
|
$$
|
|
|
-b_0^2(t) = (1-t)*b_0^1 + t*b_1^1
|
|
|
+b_0^2(t) = (1-t) * b_0^1 + t * b_1^1
|
|
|
$$
|
|
|
|
|
|
$$
|
|
|
-b_0^2(t) = (1-t)^2*b_0 + 2*t*(1-t)*b_1 + t^2*b_2
|
|
|
+b_0^2(t) = (1-t)^2 * b_0 + 2 * t * (1-t) * b_1 + t^2 * b_2
|
|
|
$$
|
|
|
|
|
|
上面的计算式子 $b_0,b_1,b_2$ 的参数很像是 $[(1-t) + t]^2 = (1-t)^2 + 2*t*(1-t) + t^2$
|