Browse Source

测试写法

usuiforhe 3 years ago
parent
commit
6dd9eadaf9
1 changed files with 5 additions and 5 deletions
  1. 5 5
      图形学/图形学.md

+ 5 - 5
图形学/图形学.md

@@ -268,7 +268,7 @@ $$
 \end{bmatrix} 
 \begin{bmatrix}
     x_b \\ y_b \\ z_b
-\end{bmatrix}= \left ( x_a*x_b + y_a*y_b + z_a*z_b \right ) 
+\end{bmatrix}= \left ( x_a * x_b + y_a * y_b + z_a * z_b \right ) 
 $$
 
 向量的叉乘转成矩阵运算
@@ -1713,19 +1713,19 @@ $$
 接下来就是得到所有的时间t的点,得到的就是一个连续曲线
 
 $$
-b_0^1(t) = (1-t)*b_0 + t*b_1
+b_0^1(t) = (1-t) * b_0 + t * b_1
 $$
 
 $$
-b_1^1(t) = (1-t)*b_1 + t*b_2
+b_1^1(t) = (1-t) * b_1 + t * b_2
 $$
 
 $$
-b_0^2(t) = (1-t)*b_0^1 + t*b_1^1
+b_0^2(t) = (1-t) * b_0^1 + t * b_1^1
 $$
 
 $$
-b_0^2(t) = (1-t)^2*b_0 + 2*t*(1-t)*b_1 + t^2*b_2
+b_0^2(t) = (1-t)^2 * b_0 + 2 * t * (1-t) * b_1 + t^2 * b_2
 $$
 
 上面的计算式子 $b_0,b_1,b_2$ 的参数很像是 $[(1-t) + t]^2 = (1-t)^2 + 2*t*(1-t) + t^2$